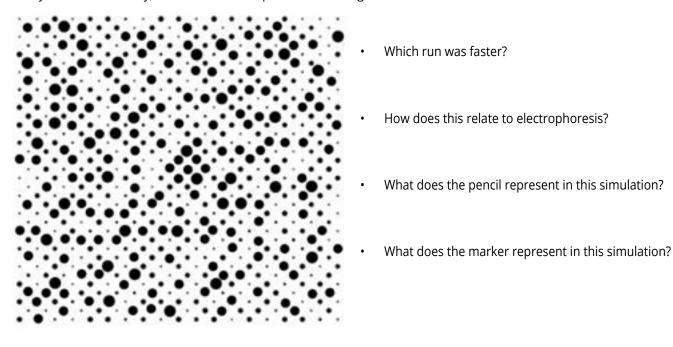
EDVOTEK® INQUIRY GUIDE: ELECTROPHORESIS

TEACHERS:

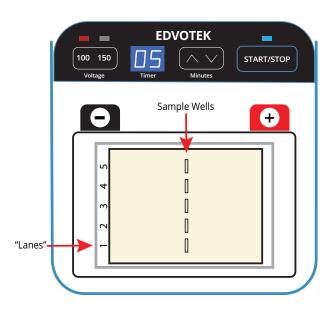
For the answer key, please contact us at info@edvotek.com

EDVOTEK.

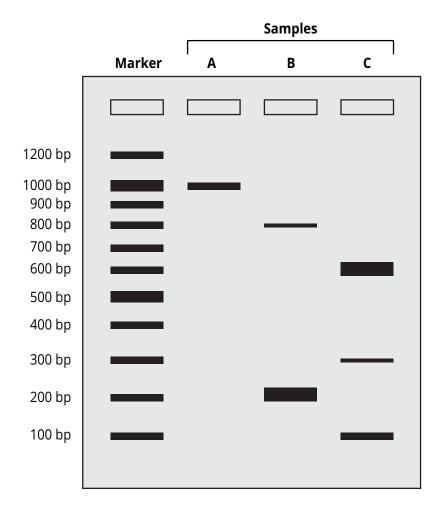

www.edvotek.com

Key Terms

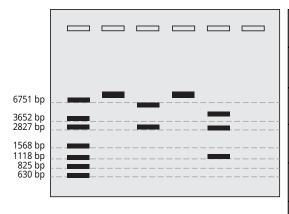
DEFINE the following terms before you begin the guide then refer to them as needed. Use any resources you want! Electrophoresis: Matrix: Agarose: DNA: RNA: Protein: **Electrical Field:** Gel: PCR: Restriction Enzyme: Ladder:


1. This question requires a pencil and a thicker marker. **TRAVERSE** the matrix below with your pencil, moving exclusively through the white areas and steering clear of the black dots. Start from the left and proceeding to the right. **REPEAT** with your marker. Finally, **ANSWER** the four question on the right.

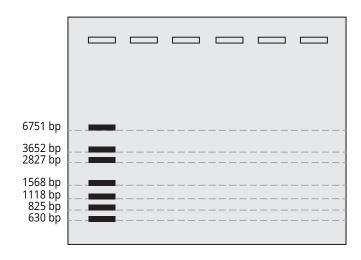
2. **CIRCLE** the molecules below that would work on the electrophoresis apparatus below.


Molecule: DNA (- charge) RNA (- charge) Protein (neutral) Protein (+ charge) Protein (- charge) (Lane 1) (Lane 2) (Lane 3) (Lane 4) (Lane 5)

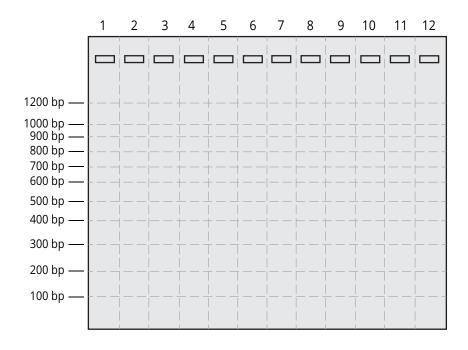
3. In the illustration below, **DRAW** an arrow (<— or —>) in each molecule's corresponding "lane" to indicate which direction (if any) each molecule will move.



- 4. In DNA electrophoresis, the matrix used to contain and separate molecules is called a gel. Typically, this gel is made from agarose. By adding more or less agarose, scientists can separate a wide range of DNA molecules from the very big (25,000 bp) to the very small (<10 bp).
 - a. **CALCULATE** how much agarose you'd need to create 50 mL of a 1% gel using the weight/volume formula below. (A 1% gel is optimal for separating DNA fragments 500-10,000 bp long.)
 - Agarose (g) = Percentage (expressed as a decimal or fraction) x Gel Volume (mL)
 - b. If you were working with DNA fragments between 50-500 bp, would you make a lower or higher percentage gel (i.e. add less or more agarose)?
- 5. Congratulations! You've successfully PCR amplified your DNA samples and run the results on a gel. Now it's time to analyze the results. Use the gel below to **ANSWER** the following questions. (You will need access to colored pens.)
 - a. In RED circle the two largest DNA fragments in the three samples.
 - b. In BLUE circle the two smallest DNA fragments in the three samples.
 - c. In BLACK circle DNA fragments larger than 500 base pairs in the three samples.


6. Congratulations again! You've successfully amplified your DNA samples, completed a restriction enzyme reaction*, and run the results on a gel. Now it's time to analyze the results. Use the gel below to **COMPLETE** the table.

Lane	Number of Fragments	Estimated Size of Fragments	Estimated Sum of all Fragments
Marker	7	6751, 3652, 2827, 1568, 1118, 825, 630	
Sample 1 (Undigested DNA)	1	7720	7720
Sample 2 (DNA digested with EcoRI)			7720
Sample 3 (DNA digested with BamHI)			7720
Sample 4 (DNA digested with EcoRI and BamHI)			7720


- * During a restriction enzyme reaction amplified DNA is mixed with enzymes that cut the DNA at specific DNA sequences resulting in smaller fragments. The more frequently a specific sequence appears the more often the DNA will be cut and the more fragments.
- 7. Now do the reverse. Use the blank agarose canvas and table below to **DRAW** the results from a diagnosis experiment. The marker in Lane 1 is already filled in for you.

Lane	Number of Fragments	Estimated Size of Fragments
Marker (already filled in)	7	6751, 3652, 2827, 1568, 1118, 825, 630
Negative Control	1	4282
Positive Control	3	4282, 3000, 1282
Patient 1	3	4282, 3000, 1282
Patient 2	1	4282

8. Use this next agarose canvas to **DRAW** a simple shape out of bands (e.g. a circle, square, heart, emoji). What base pair bands would you need to make this shape in the lab?

Lane	Number of Fragments	Estimated Size of Fragments
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

NOTE: Remember that in electrophoresis the key measurement is distance traveled from wells so feel free to use different colors, thicknesses, or textures for the bands.

